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Here we record the calculations for doing a regression on the combination
of doing a Bernoulli trial to determine whether to run a Poisson process on a
length of time T . When we don’t run the poisson process, we have a resulting
count of 0.

• Let p be the probability of choosing to run the Poisson Process.

• Let λ be the poisson density. That is, for a length of time T , the poisson
rate is λT .

• Let k denote the count (i.e. outcome) of a Poisson process.

• The sum
∑
ki=0 will denote a sum over all relevant data samples (Ti, ki)

where the count ki is 0.

Similary the sum
∑
ki>0 will denote a sum over all samples where the

count is non-zero.

We will perform the regression by finding the values of p and λ that maximize
the log-likelihood for a given set of data.

1 The Log-Likelihood

First, note that when our Bernoulli trial decides that we don’t run a poisson
process, we get a count of 0. The probabitlity of this occurring is independent
of the poisson density λ and the length of time T . So we have that:

P (0|p, λ, T ) = P (No Poisson|p, λ) + P (Poisson k = 0|p, λ, T ), (1)

= 1− p+ pe−λT . (2)

Next, we have that for counts k > 0 that we must run a Poisson process. So
we have that

P (k|p, λ) =
p(λT )k

k!
e−λT . (3)
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Our data X consists of time interval lengths Ti and response counts ki. We
maximize the log-likelihoods L for the data {(ti, ki)}. The log-likelihoods are
given by

L(X|p, λ) =
∑
ki=0

log(1− p+ pe−λTi) (4)

+
∑
ki>0

(log p+ ki log λ+ ki log Ti − λTi − log ki!) . (5)

Note that the last summand in the second sum, log ki! is independent of p
and λ.

2 Gradient of Log-Likelihood

Now we compute the gradient of the log-likelihoods.

∂L/∂λ = −p
∑
ki=0

Tie
−λTi

1− p+ pe−λTi
+
∑
ki>0

(
ki
λ
− Ti

)
. (6)

∂L/∂p = −
∑
ki=0

1− e−λTi

1− p+ pe−λTi
+

1

p

∑
ki>0

1. (7)

The equations for the gradient of L look complicated, but they can be accu-
rately summarized as two equations for the unknown variables p and λ. Every
other term is known from the data. However, the solution of these equations is
not of a closed form, and so we will need to resort to numerical methods to solve
them. We will use the Newton method to solve for where the gradient vanishes.

3 Hessian of Log-likelihood

To use the Newton method, we will need to compute another derivative of L,
i.e. the Hessian of L. We compute

∂2L

∂λ2
= p

∑
ki=0

(
T 2
i e

−λTi

1− p+ pe−λTi
− pT 2

i e
−2λTi

(1− p+ pe−λTi)
2

)
− 1

λ2

∑
ki>0

ki, (8)

= p(1− p)
∑
ki=0

T 2
i e

−λTi

(1− p+ pe−λTi)
2 −

1

λ2

∑
ki>0

ki. (9)

We compute the next second derivative:

∂2L

∂p2
= −

∑
ki=0

(
1− e−λTi

)2
(1− p+ pe−λTi)

2 −
1

p2

∑
ki>0

1. (10)
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Next, we compute the mixed second derivatives:

∂2L

∂p∂λ
= −

∑
ki=0

(
Tie

−λTi

1− p+ pe−λTi
+
pTi

(
1− e−λTi

)
e−λTi

(1− p+ pe−λTi)
2

)
, (11)

= −
∑
ki=0

Tie
−λTi

(1− p+ pe−λTi)
2 . (12)

4 Newton Step

We start with initial guesses λ0 and p0. To motivate some convenient guesses,
note that for data points where the count is non-zero, we know that a Poisson
process occurred. So as a first guess, let’s just use the mean count per mean
length for the portion of the data set with non-zero counts.

Once we have a guess of the density λ0, we use the mean length to give an
expectation that a Poisson process results in a count of zero. Then we can adjust
the proportion of non-zero counts to more accurately reflect the probability of
running a poisson process.

Therefore, convenient initial guesses are

λ0 =

∑
ki>0 ki∑
ki>0 Ti

, (13)

p0 =

∑
ki>0 1(

1− e−λ0
∑

i Ti/
∑

i 1
)∑

all data 1
. (14)

Now let us consider the induction step of Newton’s method. We are given
the current approximations λi and pi. We compute new approximations λi+1

and pi+1 in the following manner.
First recall the Hessian

H =

(
∂2L
∂λ2

∂2L
∂λ∂p

∂2L
∂λ∂p

∂2L
∂p2

)
. (15)

We solve for an update vector ~u given by

H~u = −
(
∂L/∂λ
∂L/∂p

)
. (16)

So we get

~u = −H−1

(
∂L/∂λ
∂L/∂p

)
. (17)

Note that H is a 2×2 matrix and so its inverse is readily found using a formula.
Then we find our updated approximations from(

λi+1

pi+1

)
= ~u+

(
λi
pi

)
. (18)
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We repeat until we get enough convergence to approximate values of our
parameters. This can be seen by looking at the history of the changes in the
parameters every time we run the update step.
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